Extensions 1→N→G→Q→1 with N=C22 and Q=C4×Dic3

Direct product G=N×Q with N=C22 and Q=C4×Dic3
dρLabelID
Dic3×C22×C4192Dic3xC2^2xC4192,1341

Semidirect products G=N:Q with N=C22 and Q=C4×Dic3
extensionφ:Q→Aut NdρLabelID
C22⋊(C4×Dic3) = C4×A4⋊C4φ: C4×Dic3/C2×C4S3 ⊆ Aut C2248C2^2:(C4xDic3)192,969
C222(C4×Dic3) = Dic3×C22⋊C4φ: C4×Dic3/C2×Dic3C2 ⊆ Aut C2296C2^2:2(C4xDic3)192,500
C223(C4×Dic3) = C4×C6.D4φ: C4×Dic3/C2×C12C2 ⊆ Aut C2296C2^2:3(C4xDic3)192,768

Non-split extensions G=N.Q with N=C22 and Q=C4×Dic3
extensionφ:Q→Aut NdρLabelID
C22.1(C4×Dic3) = C24.13D6φ: C4×Dic3/C2×Dic3C2 ⊆ Aut C2248C2^2.1(C4xDic3)192,86
C22.2(C4×Dic3) = (C2×C12).Q8φ: C4×Dic3/C2×Dic3C2 ⊆ Aut C22484C2^2.2(C4xDic3)192,92
C22.3(C4×Dic3) = M4(2)⋊Dic3φ: C4×Dic3/C2×Dic3C2 ⊆ Aut C2296C2^2.3(C4xDic3)192,113
C22.4(C4×Dic3) = M4(2)⋊4Dic3φ: C4×Dic3/C2×Dic3C2 ⊆ Aut C22484C2^2.4(C4xDic3)192,118
C22.5(C4×Dic3) = C12.5C42φ: C4×Dic3/C2×Dic3C2 ⊆ Aut C2296C2^2.5(C4xDic3)192,556
C22.6(C4×Dic3) = Dic3×M4(2)φ: C4×Dic3/C2×Dic3C2 ⊆ Aut C2296C2^2.6(C4xDic3)192,676
C22.7(C4×Dic3) = C12.7C42φ: C4×Dic3/C2×Dic3C2 ⊆ Aut C2296C2^2.7(C4xDic3)192,681
C22.8(C4×Dic3) = C24.12D6φ: C4×Dic3/C2×C12C2 ⊆ Aut C2248C2^2.8(C4xDic3)192,85
C22.9(C4×Dic3) = C12.(C4⋊C4)φ: C4×Dic3/C2×C12C2 ⊆ Aut C2296C2^2.9(C4xDic3)192,89
C22.10(C4×Dic3) = (C2×C24)⋊C4φ: C4×Dic3/C2×C12C2 ⊆ Aut C22484C2^2.10(C4xDic3)192,115
C22.11(C4×Dic3) = C4×C4.Dic3φ: C4×Dic3/C2×C12C2 ⊆ Aut C2296C2^2.11(C4xDic3)192,481
C22.12(C4×Dic3) = C12.12C42φ: C4×Dic3/C2×C12C2 ⊆ Aut C2296C2^2.12(C4xDic3)192,660
C22.13(C4×Dic3) = C8×C3⋊C8central extension (φ=1)192C2^2.13(C4xDic3)192,12
C22.14(C4×Dic3) = C42.279D6central extension (φ=1)192C2^2.14(C4xDic3)192,13
C22.15(C4×Dic3) = C24⋊C8central extension (φ=1)192C2^2.15(C4xDic3)192,14
C22.16(C4×Dic3) = (C2×C12)⋊3C8central extension (φ=1)192C2^2.16(C4xDic3)192,83
C22.17(C4×Dic3) = (C2×C24)⋊5C4central extension (φ=1)192C2^2.17(C4xDic3)192,109
C22.18(C4×Dic3) = C2×C4×C3⋊C8central extension (φ=1)192C2^2.18(C4xDic3)192,479
C22.19(C4×Dic3) = C2×C42.S3central extension (φ=1)192C2^2.19(C4xDic3)192,480
C22.20(C4×Dic3) = Dic3×C2×C8central extension (φ=1)192C2^2.20(C4xDic3)192,657
C22.21(C4×Dic3) = C2×C24⋊C4central extension (φ=1)192C2^2.21(C4xDic3)192,659
C22.22(C4×Dic3) = C2×C6.C42central extension (φ=1)192C2^2.22(C4xDic3)192,767

׿
×
𝔽