extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(C4×Dic3) = C24.13D6 | φ: C4×Dic3/C2×Dic3 → C2 ⊆ Aut C22 | 48 | | C2^2.1(C4xDic3) | 192,86 |
C22.2(C4×Dic3) = (C2×C12).Q8 | φ: C4×Dic3/C2×Dic3 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.2(C4xDic3) | 192,92 |
C22.3(C4×Dic3) = M4(2)⋊Dic3 | φ: C4×Dic3/C2×Dic3 → C2 ⊆ Aut C22 | 96 | | C2^2.3(C4xDic3) | 192,113 |
C22.4(C4×Dic3) = M4(2)⋊4Dic3 | φ: C4×Dic3/C2×Dic3 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.4(C4xDic3) | 192,118 |
C22.5(C4×Dic3) = C12.5C42 | φ: C4×Dic3/C2×Dic3 → C2 ⊆ Aut C22 | 96 | | C2^2.5(C4xDic3) | 192,556 |
C22.6(C4×Dic3) = Dic3×M4(2) | φ: C4×Dic3/C2×Dic3 → C2 ⊆ Aut C22 | 96 | | C2^2.6(C4xDic3) | 192,676 |
C22.7(C4×Dic3) = C12.7C42 | φ: C4×Dic3/C2×Dic3 → C2 ⊆ Aut C22 | 96 | | C2^2.7(C4xDic3) | 192,681 |
C22.8(C4×Dic3) = C24.12D6 | φ: C4×Dic3/C2×C12 → C2 ⊆ Aut C22 | 48 | | C2^2.8(C4xDic3) | 192,85 |
C22.9(C4×Dic3) = C12.(C4⋊C4) | φ: C4×Dic3/C2×C12 → C2 ⊆ Aut C22 | 96 | | C2^2.9(C4xDic3) | 192,89 |
C22.10(C4×Dic3) = (C2×C24)⋊C4 | φ: C4×Dic3/C2×C12 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.10(C4xDic3) | 192,115 |
C22.11(C4×Dic3) = C4×C4.Dic3 | φ: C4×Dic3/C2×C12 → C2 ⊆ Aut C22 | 96 | | C2^2.11(C4xDic3) | 192,481 |
C22.12(C4×Dic3) = C12.12C42 | φ: C4×Dic3/C2×C12 → C2 ⊆ Aut C22 | 96 | | C2^2.12(C4xDic3) | 192,660 |
C22.13(C4×Dic3) = C8×C3⋊C8 | central extension (φ=1) | 192 | | C2^2.13(C4xDic3) | 192,12 |
C22.14(C4×Dic3) = C42.279D6 | central extension (φ=1) | 192 | | C2^2.14(C4xDic3) | 192,13 |
C22.15(C4×Dic3) = C24⋊C8 | central extension (φ=1) | 192 | | C2^2.15(C4xDic3) | 192,14 |
C22.16(C4×Dic3) = (C2×C12)⋊3C8 | central extension (φ=1) | 192 | | C2^2.16(C4xDic3) | 192,83 |
C22.17(C4×Dic3) = (C2×C24)⋊5C4 | central extension (φ=1) | 192 | | C2^2.17(C4xDic3) | 192,109 |
C22.18(C4×Dic3) = C2×C4×C3⋊C8 | central extension (φ=1) | 192 | | C2^2.18(C4xDic3) | 192,479 |
C22.19(C4×Dic3) = C2×C42.S3 | central extension (φ=1) | 192 | | C2^2.19(C4xDic3) | 192,480 |
C22.20(C4×Dic3) = Dic3×C2×C8 | central extension (φ=1) | 192 | | C2^2.20(C4xDic3) | 192,657 |
C22.21(C4×Dic3) = C2×C24⋊C4 | central extension (φ=1) | 192 | | C2^2.21(C4xDic3) | 192,659 |
C22.22(C4×Dic3) = C2×C6.C42 | central extension (φ=1) | 192 | | C2^2.22(C4xDic3) | 192,767 |